Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203785

RESUMO

Propolis is a natural resin produced by honeybees with plenty of pharmacologic properties, including antioxidant activity. Oxidative stress disrupts germ cell development and sperm function, with demonstrated harmful effects on male reproduction. Several natural antioxidants have been shown to reduce oxidative damage and increase sperm fertility potential; however, little is known about the effects of propolis. This work evaluated the role of propolis in protecting spermatogonial cells from oxidative damage. Propolis' phytochemical composition and antioxidant potential were determined, and mouse GC-1spg spermatogonial cells were treated with 0.1-500 µg/mL propolis (12-48 h) in the presence or absence of an oxidant stimulus (tert-butyl hydroperoxide, TBHP, 0.005-3.6 µg/mL, 12 h). Cytotoxicity was assessed by MTT assays and proliferation by Ki-67 immunocytochemistry. Apoptosis, reactive oxygen species (ROS), and antioxidant defenses were evaluated colorimetrically. Propolis presented high phenolic and flavonoid content and moderate antioxidant activity, increasing the viability of GC-1spg cells and counteracting TBHP's effects on viability and proliferation. Additionally, propolis reduced ROS levels in GC-1spg, regardless of the presence of TBHP. Propolis decreased caspase-3 and increased glutathione peroxidase activity in TBHP-treated GC-1spg cells. The present study shows the protective action of propolis against oxidative damage in spermatogonia, opening the possibility of exploiting its benefits to male fertility.


Assuntos
Ascomicetos , Própole , Masculino , Abelhas , Animais , Camundongos , Espermatogônias , Antioxidantes/farmacologia , Própole/farmacologia , terc-Butil Hidroperóxido/toxicidade , Espécies Reativas de Oxigênio , Sementes , Estresse Oxidativo
2.
Antibiotics (Basel) ; 12(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37760684

RESUMO

Aliarcobacter butzleri is a Gram-negative bacterium associated with infections of the gastrointestinal tract and widely distributed in various environments. For successful infection, A. butzleri should be able to tolerate various stresses during gastrointestinal passage, such as bile. Bile represents an antimicrobial host barrier that acts against external noxious agents and consists of a variety of bile salts. The intestinal bile salts act as detergents involved in the antimicrobial host defense; although, on the bacterial side, they could also serve as a signal to activate virulence mechanisms. The aim of this work was to understand the effects of bile salts on the survival and virulence of A. butzleri. In our study, A. butzleri was able to survive in the presence of human physiological concentrations of bile salts. Regarding the virulence features, an increase in cellular hydrophobicity, a decrease in motility and expression of flaA gene, as well as an increase in biofilm formation with a concomitant change in the type of biofilm structure were observed in the presence of sub-inhibitory concentration of bile salts. Concerning adhesion and invasion ability, no significant difference was observed. Overall, the results demonstrated that A. butzleri is able to survive in physiological concentrations of bile salts and that exposure to bile salts could change its virulence mechanisms.

3.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119522, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37315586

RESUMO

Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Antígenos de Neoplasias/metabolismo , Oxirredutases/genética
4.
Bioelectrochemistry ; 152: 108461, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37192590

RESUMO

STEAP1 is a cell surface protein of the STEAP family whose main function focuses on intercellular communication and cell growth. STEAP1 is considered a promising putative biomarker and a candidate target for prostate cancer treatment. For specific and selective detection of STEAP1, a molecularly imprinted polymers (MIP) was developed on a screen-printed electrode (C-SPE) whose surface was modified with a nanocomposite based on carbon nanotubes decorated with dendritic platinum nanoparticles (CNTs- PAH /Pt). Then, the MIPs were produced on the modified C-SPE by electropolymerization of a mixture of STEAP1 and a monomer (pyrrole-2-carboxylic acid). Then, the protein was removed from the polymeric network by enzymatic treatment with trypsin, which created the specific template cavities for further STEAP1 detection. Electrochemical techniques such as EIS and CV were used to follow the chemical modification steps of C-SPE. The analytical performance of the biosensor was evaluated by SWV in PBS buffer and in lysates of neoplastic prostate cancer cells (LNCaP) extracts. The MIP material showing a linear range from 130 pg/ml to 13 µg/ml. Overall, the biosensor exhibits essential properties such as selectivity, sensitivity and reproducibility for its application in medical and clinical research diagnosis and/or prognosis of prostate cancer.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Impressão Molecular , Nanotubos de Carbono , Neoplasias da Próstata , Masculino , Humanos , Plásticos , Nanotubos de Carbono/química , Reprodutibilidade dos Testes , Platina , Biomarcadores , Anticorpos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Neoplasias da Próstata/diagnóstico , Impressão Molecular/métodos , Eletrodos , Antígenos de Neoplasias , Oxirredutases
5.
Methods Mol Biol ; 2652: 35-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093469

RESUMO

Membrane proteins (MPs) play vital roles across various cellular functions, biological processes, physiological signaling pathways, and human-related disorders. Considering the clinical relevance of MPs and their application as therapeutic targets, it is crucial to explore highly effective production platforms and purification approaches to ultimately obtain a high-resolution structure of the target. Therefore, it would be possible to gather detailed knowledge on their mechanism of action which will be the basis for the rational design of novel and stronger drugs. Unfortunately, when compared to their soluble counterparts, 3D structures of MPs are really scarce (<2%), mainly due to poorly natural abundance, challenges associated with protein solubility and stability, and difficulties in producing bioactive and properly structural folded targets. These drawbacks could significantly impair the use of MPs as therapeutic targeting and demand efforts to develop tailor-made strategies for their appropriate handling. Therefore, this chapter is focused on describing a detailed and high-throughput procedure for the biosynthesis of MPs using Komagataella pastoris cell cultures as expression system in a mini-bioreactor platform. Additionally, insights on a purification strategy that combines immobilized-metal affinity and ion-exchange chromatography are described to further obtain the target protein with a significant degree of purity.


Assuntos
Proteínas de Membrana , Saccharomycetales , Humanos , Proteínas de Membrana/metabolismo , Pichia/metabolismo , Reatores Biológicos , Proteínas Recombinantes/metabolismo
6.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047621

RESUMO

The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) protein has been indicated as an overexpressed oncoprotein in prostate cancer (PCa), associated with tumor progression and aggressiveness. Taxane-based antineoplastic drugs such as paclitaxel, docetaxel, or cabazitaxel, have been investigated in PCa treatment, namely for the development of combined therapies with the improvement of therapeutic effectiveness. This study aimed to evaluate the expression of STEAP1 in response to taxane-based drugs and assess whether the sensitivity of PCa cells to treatment with paclitaxel, docetaxel, or cabazitaxel may change when the STEAP1 gene is silenced. Thus, wild-type and STEAP1 knockdown LNCaP and C4-2B cells were exposed to paclitaxel, docetaxel or cabazitaxel, and STEAP1 expression, cell viability, and survival pathways were evaluated. The results obtained showed that STEAP1 knockdown or taxane-based drugs treatment significantly reduced the viability and survival of PCa cells. Relatively to the expression of proliferation markers and apoptosis regulators, LNCaP cells showed a reduced proliferation, whereas apoptosis was increased. However, the effect of paclitaxel, docetaxel, or cabazitaxel treatment was reversed when combined with STEAP1 knockdown. Besides, these chemotherapeutic drugs may stimulate the cell growth of PCa cells knocked down for STEAP1. In conclusion, this study demonstrated that STEAP1 expression levels might influence the response of PCa cells to chemotherapeutics drugs, indicating that the use of paclitaxel, docetaxel, or cabazitaxel may lead to harmful effects in PCa cells with decreased expression of STEAP1.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Próstata/patologia , Linhagem Celular Tumoral , Taxoides/farmacologia , Taxoides/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos de Neoplasias/uso terapêutico , Oxirredutases
7.
Mol Med Rep ; 27(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36660947

RESUMO

Anti­androgen drugs are the standard pharmacological therapies for treatment of non­metastatic prostate cancer (PCa). However, the response of PCa cells may depend on the anti­androgen used and often patients become resistant to treatment. Thus, studying how the anti­androgen drugs affect oncogenes expression and action and the identification of the best strategy for combined therapies are essential to improve the efficacy of treatments. The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) is an oncogene associated with PCa progression and aggressiveness, although its relationship with the androgen receptor signaling remains to be elucidated. The present study aimed to evaluate the effect of anti­androgens in regulating STEAP1 expression and investigate whether silencing STEAP1 can make PCa cells more sensitive to anti­androgen drugs. For this purpose, wild­type and STEAP1 knockdown LNCaP cells were exposed to bicalutamide, enzalutamide and apalutamide. Bicalutamide decreased the expression of STEAP1, but enzalutamide and apalutamide increased its expression. However, decreased cell proliferation and increased apoptosis was observed in response to all drugs. Overall, the cellular and molecular effects were similar between LNCaP wild­type and LNCaP­STEAP1 knockdown cells, except for c­myc expression levels, where a cumulative effect between anti­androgen treatment and STEAP1 knockdown was observed. The effect of STEAP1 knockdown alone or combined with anti­androgens in c­myc levels is required to be addressed in future studies.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Nitrilas/farmacologia , Antagonistas de Androgênios/farmacologia , Antígenos de Neoplasias , Oxirredutases
8.
Toxics ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36136495

RESUMO

Tetrabromobisphenol A (TBBPA) is a flame retardant widely used to reduce flammability. It is an endocrine disruptor, and due to constant human exposure, some concerns have been raised regarding its impact on human health. Studies showed that TBBPA affects oxidative stress, cell proliferation and intracellular calcium levels. However, the vascular consequences of TBBPA exposure are still relatively unexplored. Hence, this work aimed to analyse TBBPA effects on rat aortic smooth muscle and its action mechanisms. Through an ex vivo approach, Wistar rat aortas were used in an organ bath to evaluate the vascular effect of TBBPA (0.01-100 µM). Additionally, TBBPA's mode of action was studied through calcium and potassium channel inhibitors. Resorting to in vitro studies, A7r5 cells were used to analyse L-Type voltage-gated calcium channel (VGCC) activity through the whole-cell configuration of the patch clamp technique, and the mRNA expression of proteins and ion channels involved in vascular contractility. The results showed vasorelaxation of rat aorta induced by TBBPA exposure, involving the inactivation of L-Type VGCC and activation of potassium channels, and the modulation of mRNA expression of L-type calcium and large-conductance calcium 1.1 and the BKCa 1.1 α- and ß1 -subunit channels, soluble guanylyl cyclase and protein Kinase G.

9.
Mol Biol Rep ; 49(8): 7731-7741, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716291

RESUMO

BACKGROUND: The human Amniotic Membrane (hAM) has been studied as a potential therapeutic option in cancer, namely in hepatocellular carcinoma. Previously, our research group evaluated the effect of human Amniotic Membrane Protein Extracts (hAMPE) in cancer therapy, demonstrating that hAMPE inhibit the metabolic activity of human hepatocellular carcinoma cell lines: Hep3B2.1-7, HepG2 and Huh7. Therefore, and considering the close relationship between metabolic activity and oxidative stress, the aim of this study was to evaluate the effect of hAMPE treatment in glucose metabolism and its role in oxidative stress of hepatocellular carcinoma. METHODS AND RESULTS: Glucose uptake and lactate production was assessed by 1 H-NMR, and the expression of several mediators of the glycolytic pathway was evaluated by Western blot or fluorescence. Total antioxidant capacity (TAC) and biomarkers of oxidative stress effects in proteins were detected. Our results showed that hAMPE treatment increased glucose consumption on Hep3B2.1-7, HepG2, and Huh7 through the increase of GLUT1 in Hep3B2.1-7 and Huh7, and GLUT3 in HepG2 cells. It was observed an increased expression of 6-phosphofrutokinase (PFK-1L) in all cell lines though glucose was not converted to lactate on HepG2 and Huh7 cells, suggesting that hAMPE treatment may counteract the Warburg effect observed in carcinogenesis. In Hep3B2.1-7, hAMPE treatment induced an increase in expression of lactate dehydrogenase (LDH) and monocarboxylate transporter isoform 4 (MCT4). We further detected that hAMPE enhances the TAC of culture media after 2 and 8 h. This was followed by a degree of protection against proteins nitration and carbonylation. CONCLUSIONS: Overall, this work highlights the potential usefulness of hAMPE as anticancer therapy through the modulation of the glycolytic and oxidative profile in human hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Âmnio/química , Âmnio/metabolismo , Biomarcadores/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Glicólise , Humanos , Ácido Láctico/metabolismo , Neoplasias Hepáticas/metabolismo , Estresse Oxidativo
10.
Toxicology ; 470: 153158, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35321852

RESUMO

Tetrabromobisphenol A (TBBPA) is a flame retardant that can contaminate the environment and human being, acting as an endocrine disruptor. Several studies propose a correlation between TBBPA exposure and adverse health outcomes, however, at vascular level TBBPA effects are still poorly understood. Thus, considering that the vascular tonus is regulated by vasoactive substances (serotonin and histamine) which are involved in some pathological processes, this work aimed to analyse the direct effects and the 24 h exposure of TBBPA on the human umbilical artery (HUA) and to investigate its signalling pathway. Using organ bath technique, endothelium-denuded HUA rings were contracted with serotonin (5-HT, 1 µM), histamine (His, 10 µM) and potassium chloride (KCl, 60 mM), and the exposure (0-24 h) of different concentrations of TBBPA (1, 10 and 50 µM) were evaluated. Besides, the vascular mode of action of TBBPA was studied through the analysis of cyclic guanosine monophosphate and calcium channels activity, pathways involved in relaxation and contraction of HUA, respectively. Our results demonstrated that the direct effects of TBBPA induce a vasorelaxation of HUA. The maximum relaxant effect was observed at 100 µM of TBBPA with 63.74%, 64.24% and 30.05%, for 5-HT-, His- or KCl-contracted arteries respectively. The 24 h TBBPA exposure altered the vasorelaxant response pattern of sodium nitroprusside and nifedipine. This effect is due to the involvement of TBBPA with the NO/sGC/cGMP/PKG pathway and the interference in calcium influx. Furthermore, using the real-time quantitative polymerase chain reaction, TBBPA clearly modulates L-type calcium and large-conductance Ca2+ 1.1 α- and ß1 -subunit channels, and soluble guanylyl cyclase and protein Kinase G. So, at vascular level TBBPA induces changes in HUA after TBBPA exposure.


Assuntos
Cálcio , Doadores de Óxido Nítrico , Cálcio/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Histamina/farmacologia , Humanos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Bifenil Polibromatos , Canais de Potássio/farmacologia , Serotonina , Vasodilatação/fisiologia
11.
Life (Basel) ; 11(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833128

RESUMO

The Six Transmembrane Epithelial Antigen of the Prostate (STEAP1) is an oncogene overexpressed in several human tumors, particularly in prostate cancer (PCa). However, the mechanisms involved in its overexpression remain unknown. It is well known that epigenetic modifications may result in abnormal gene expression patterns, contributing to tumor initiation and progression. Therefore, this study aimed to analyze the methylation pattern of the STEAP1 gene in PCa versus non-neoplastic cells. Bisulfite amplicon sequencing of the CpG island at the STEAP1 gene promoter showed a higher methylation level in non-neoplastic PNT1A prostate cells than in human PCa samples. Bioinformatic analysis of the GEO datasets also showed the STEAP1 gene promoter as being demethylated in human PCa, and a negative association with STEAP1 mRNA expression was observed. These results are supported by the treatment of non-neoplastic PNT1A cells with DNMT and HDAC inhibitors, which induced a significant increase in STEAP1 mRNA expression. In addition, the involvement of HDAC in the regulation of STEAP1 mRNA expression was corroborated by a negative association between STEAP1 mRNA expression and HDAC4,5,7 and 9 in human PCa. In conclusion, our work indicates that STEAP1 overexpression in PCa can be driven by the hypomethylation of STEAP1 gene promoter.

12.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576175

RESUMO

BACKGROUND: The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. METHODS: The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. RESULTS: The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of ~55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein's structural stability. CONCLUSIONS: A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.


Assuntos
Antígenos de Neoplasias/metabolismo , Oxirredutases/metabolismo , Neoplasias da Próstata/metabolismo , Antígenos de Neoplasias/genética , Dicroísmo Circular , Humanos , Imunoprecipitação , Masculino , Oxirredutases/genética , Neoplasias da Próstata/genética , Estabilidade Proteica , Sefarose/análogos & derivados , Sefarose/química
13.
Chemosphere ; 277: 130302, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33789217

RESUMO

Personal care products (PCPs) are a group of diverse substances widely used daily for health, beauty, and cleanliness. More than 90% of all PCPs contain the UV-B filter octylmethoxycinnamate (OMC) as a protective function, however, their safety has recently been questioned. The purpose of the present work was to understand how the long-term exposure of UV-filter OMC, used daily by pregnant women, disrupts their vascular homeostasis, altering vascular responses of proteins and channels involved in contractile processes. The long-term effects of 24 h of exposure to OMC (1, 10, and 50 µmol/L) were evaluated on contractile responses of human umbilical arteries (HUA) to serotonin and potassium chloride. Since OMC altered vascular homeostasis of arteries, its vascular mode of action was explored in more detail through the analysis of the activity of cGMP and Ca2+-channels, two pathways involved in their relaxation and contraction, respectively. Our findings showed that long-term exposure of UV-filter OMC impaired the main vasorelaxant mechanism of HUA, once OMC altered the vasorelaxant response pattern of sodium nitroprusside and nifedipine. Results also showed that long-term exposure to OMC induced a decreased vasorelaxation response on HUA due to an interference with the NO/sGC/cGMP/PKG pathway. Moreover, OMC seems to modulate the L-type Ca2+ channels, the BKCa 1.1 α-subunit channels, and the PKG. Overall, since OMC compromises the vascular homeostasis of pregnant women it can be an inductor of pregnancy hypertensive disorders.


Assuntos
Artérias Umbilicais , Vasodilatadores , Cinamatos/toxicidade , Feminino , Humanos , Óxido Nítrico/farmacologia , Gravidez , Vasodilatação , Vasodilatadores/toxicidade
14.
Theriogenology ; 157: 472-482, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32898822

RESUMO

Age-related changes, namely the increase in oxidative stress (OS) with the consequent sperm damage, result in decreased male fertility. Regucalcin (RGN) is a Ca2+-binding protein that has been shown to have beneficial effects on spermatogenesis by suppressing OS and chemical/radiation-induced damage. This work aims to evaluate whether RGN overexpression reduces the ageing-associated decline of male reproductive function. Sperm and testicular function analysis were performed in young-adult and senescent transgenic rats overexpressing RGN (Tg-RGN) comparatively with their wild-type (Wt) littermates. The gonadosomatic index (GI), tubular differentiation index and the expression levels of RGN and other proliferation regulators were evaluated. Moreover, the sperm parameters, OS analysis and immunolocalization of RGN were assessed, as well as morphometric evaluation of epididymal tubules. Both GI and sperm counts were reduced in the senescent Wt rats, but maintained in the Tg-RGN. Also, the levels of stem cell factor (SCF), c-Kit, and Akt were maintained in the testis of aged Tg-RGN rats, suggesting that the normal spermatogenic output was preserved over time in these animals, an effect not observed in Wt. Senescent Tg-RGN rats also presented lower sperm lipid peroxidation and total oxidant status relative to the Wt. Furthermore, aged Tg-RGN rats displayed higher sperm viability, higher frequency of sperm with normal morphology, and reduced incidence of head and neck/midpiece defects when compared with Wt, which may be a consequence of the lower OS levels found in the sperm of these animals. Interestingly, RGN expression increased with ageing in sperm, being mainly localized in the acrosome. Altogether, these findings indicate that the modulation of RGN levels may alleviate the age-related decline in sperm quality and testicular function.


Assuntos
Proteínas de Ligação ao Cálcio , Peptídeos e Proteínas de Sinalização Intracelular , Envelhecimento , Animais , Proteínas de Ligação ao Cálcio/genética , Hidrolases de Éster Carboxílico , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Contagem de Espermatozoides/veterinária , Espermatozoides/metabolismo , Testículo/metabolismo
15.
Cell Tissue Res ; 373(2): 459-476, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29582167

RESUMO

The discovery of the immunoregulatory potential of human amniotic membrane (hAM) propelled several studies focusing on its application for the treatment of immunological disorders. However, there is little information regarding the effects of hAM on distinct activation and differentiation stages of immune cells. Here, we aim to investigate the effect of human amniotic membrane extract (hAME) on the pattern of cytokine production by T cells, monocytes and myeloid dendritic cells (mDCs). For this purpose, peripheral blood mononuclear cells (PBMCs) from eight healthy individuals were stimulated in vitro in the presence or absence of hAME. Mitogen-induced proliferation of PBMCs and cytokine production among the distinct T cell functional compartments, monocyte subpopulations and mDCs were evaluated. hAME displayed an anti-proliferative effect and decreased the frequency of T cells producing tumor necrosis factor (TNF)α, interferon (IFN)γ and interleukin (IL)-2, for all T cell functional compartments. The frequency of IL-17 and IL-9-producing T cells was also reduced. The inhibition of mRNA expression of granzyme B, perforin and NKG2D by CD8+ T cells and γδ T cells and the augment of FoxP3 and IL-10 in CD4+ T cells and IL-10 in regulatory T cells were also observed. Furthermore, hAME inhibited IFNγ-induced protein (IP)-10 expression by classical and non-classical monocytes, without hampering the production of TNFα and IL-6 by monocytes and mDCs. These results suggest that hAME exerts an anti-inflammatory effect on T cells, still at a different extent for distinct T cell functional compartments.


Assuntos
Âmnio/metabolismo , Células Dendríticas/citologia , Monócitos/citologia , Células Mieloides/citologia , Subpopulações de Linfócitos T/citologia , Adulto , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-2/metabolismo , Interleucina-9/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Mitógenos/farmacologia , Monócitos/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
16.
Cancer Lett ; 405: 10-21, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28751268

RESUMO

The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers.


Assuntos
Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Hormônios Esteroides Gonadais/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo , Neoplasias Urogenitais/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Masculino , Próstata/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Fator de Células-Tronco/genética , Testículo/metabolismo , Neoplasias Urogenitais/genética , Útero/metabolismo
17.
Phlebology ; 32(5): 334-341, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27329669

RESUMO

Objectives Transforming growth factor-beta1 (TGF-ß1) may participate in local chronic inflammatory processes in varicose veins and in venous wall structure modifications through regulation of matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitor of metalloproteinase (TIMP)). The aim of this study was to analyze the effect of TGF-ß1 in the vein wall, namely on the gene expression of selected MMP, TIMP and TGF-ß1 receptors. Methods Healthy vein samples were harvested from eight subjects who underwent coronary bypass graft surgery with great saphenous vein. Each vein sample was divided into two segments, which were cultivated separately in vitro (one of the segments had TGF-ß1 added) and then submitted to gene expression analysis. Results In the TGF-ß1 supplemented group, there was a general increase in the mean gene expression. Specifically, expression of MMP9, MMP12, TIMP1 and TIMP2 were statistically significant. Conclusion The results of this study demonstrate that the gene expression of MMP9, MMP12, TIMP1 and TIMP2 was influenced by the addition of TGF-ß1. These results may be translated to chronic venous insufficiency framework and suggest involvement of TGF-ß1 in the vein wall pathology.


Assuntos
Regulação da Expressão Gênica , Metaloproteinase 12 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Veia Safena/metabolismo , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Fator de Crescimento Transformador beta1/biossíntese , Insuficiência Venosa/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Veia Safena/patologia , Insuficiência Venosa/patologia
18.
Life Sci ; 164: 31-41, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27620963

RESUMO

AIMS: Regucalcin (RGN), a protein broadly expressed in the male reproductive tract, has shown to have beneficial effects on spermatogenesis suppressing chemical-induced apoptosis. This study aimed to evaluate whether RGN overexpression ameliorates the spermatogenic phenotype after radiation treatment. MAIN METHODS: Transgenic rats overexpressing RGN (Tg-RGN) and their wild-type (Wt) counterparts were exposed to a single dose of X-rays (6Gy), and at ten weeks after irradiation, the testicular status and the epididymal sperm parameters were evaluated. The expression of RGN and several cell cycle and apoptosis regulators, the enzymatic activity of caspase-3, and RGN immunostaining were also assessed. KEY FINDINGS: Tg-RGN animals displayed higher gonadosomatic index, and augmented sperm viability and motility relatively to their Wt counterparts after irradiation, as well as higher frequency of normal sperm morphology and a diminished incidence of head-defects. The differences in reproductive parameters were underpinned by a lower rate of apoptosis, as evidenced by the reduced activity of caspase-3, lower levels of caspase-8, and increased Bcl-2/Bax ratio in the testis of Tg-RGN animals. Supporting the involvement of RGN in the anti-apoptotic response, an enhanced expression of RGN was observed in irradiated rats. SIGNIFICANCE: Transgenic-overexpression of RGN protected against radiation-induced testicular damage, which strengthens the role of this protein protecting cells from the damage of external agents. These findings also indicated that the modulation of RGN testicular levels would be a mechanism for fertility preservation in men undergoing oncological treatment.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Testículo/efeitos da radiação , Animais , Western Blotting , Hidrolases de Éster Carboxílico , Caspases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Expressão Gênica , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos da radiação , Testículo/metabolismo
19.
Appl Microbiol Biotechnol ; 100(8): 3723-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860940

RESUMO

The present study reports the successful production of human pre-miR-29b both intra- and extracellularly in the marine phototrophic bacterium Rhodovulum sulfidophilum using recombinant RNA technology. In a first stage, the optimal transformation conditions (0.025 µg of plasmid DNA, with a heat-shock of 2 min at 35 °C) were established, in order to transfer the pre-miR-29b encoding plasmid to R. sulfidophilum host. Furthermore, the extracellular recovery of this RNA product from the culture medium was greatly improved, achieving quantities that are compatible with the majority of applications, namely for in vitro or in vivo studies. Using this system, the extracellular human pre-miR-29b concentration was approximately 182 µg/L, after 40 h of bacterial growth, and the total intracellular pre-miR-29b was of about 358 µg/L, at 32 h. At the end of the fermentation, it was verified that almost 87 % of cells were viable, indicating that cell lysis is minimized and that the extracellular medium is not highly contaminated with the host intracellular ribonucleases (RNases) and endotoxins, which is a critical parameter to guarantee the microRNA (miRNA) integrity. These findings demonstrate that pre-miRNAs can be produced by recombinant RNA technology, offering novel clues for the production of natural pre-miRNA agents for functional studies and RNA interference (RNAi)-based therapeutics.


Assuntos
Expressão Gênica , MicroRNAs/biossíntese , Rhodovulum/metabolismo , Meios de Cultura/metabolismo , Humanos , MicroRNAs/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Rhodovulum/genética
20.
Transgenic Res ; 25(2): 139-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26553531

RESUMO

Regucalcin (RGN) is a calcium-binding protein underexpressed in human prostate cancer cases, and it has been associated with the suppression of cell proliferation and the regulation of several metabolic pathways. On the other hand, it is known that the metabolic reprogramming with augmented glycolytic metabolism and enhanced proliferative capability is a characteristic of prostate cancer cells. The present study investigated the influence of RGN on the glycolytic metabolism of rat prostate by comparing transgenic adult animals overexpressing RGN (Tg-RGN) with their wild-type counterparts. Glucose consumption was significantly decreased in the prostate of Tg-RGN animals relatively to wild-type, and accompanied by the diminished expression of glucose transporter 3 and glycolytic enzyme phosphofructokinase. Also, prostates of Tg-RGN animals displayed lower lactate levels, which resulted from the diminished expression/activity of lactate dehydrogenase. The expression of the monocarboxylate transporter 4 responsible for the export of lactate to the extracellular space was also diminished with RGN overexpression. These results showed the effect of RGN in inhibiting the glycolytic metabolism in rat prostate, which was underpinned by a reduced cell proliferation index. The present findings also suggest that the loss of RGN may predispose to a hyper glycolytic profile and fostered proliferation of prostate cells.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proliferação de Células/genética , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Próstata/metabolismo , Animais , Apoptose/genética , Proteínas de Ligação ao Cálcio/biossíntese , Hidrolases de Éster Carboxílico , Regulação da Expressão Gênica , Glucose/genética , Transportador de Glucose Tipo 3/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Masculino , Transportadores de Ácidos Monocarboxílicos/biossíntese , Proteínas Musculares/biossíntese , Fosfofrutoquinase-1/biossíntese , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ratos , Ratos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...